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A solution is presented for the problem of calculating the heat-removal
capacity and optimization of a system of radially divergent solid and
hollow conical pins radiating into space.

A number of reports have been published on the
possibility of intensifying the removal of heat from
heated bodies in a vacuum by means of flat and an-
nular radiator fins [1—4). However, in those cases in
which the surface of the body to be cooled resembles
a polyhedron or a sphere (for example, the outer shell
of a low-power thermal-emission or thermoelectric
generator [5]), the heat-removal radiator elements
need not be fins, but may be pins. Calculating the effi-
ciency and optimization of suchpins demands consider-
ation of the mutual radiative interaction (separate pins
of various shapes are examined in [6] and [7]).

Let us consider the problem of calculating and
optimizing a radiator system in which the radially
divergent conical pins radiating into space are situated
on an isothermal sphere to be cooled (Fig, 1a),

Let us consider the case in which:

1) the radius of the sphere to be cooled—and through
whose center the axes of the pins pass—is deter-
mined from the condition that the bases of the two
closest pins come into contact on the surface of the
sphere
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2) the pins are situated so that the points at which
their axes intersect with the surface of the sphere
represent the apices of a regular polyhedron inseribed
within the sphere.

We will treat the problem under the following as~
sumptions:

1, The surface of the body to be cooled that is free
of pins is small in comparison with the surface of the
pins and we may therefore neglect the mutual irradia-
tion of the pins and the body to be cooled, taking into
consideration only the mutual irradiation of the pins,

2. The temperature in the cross section of the pins
is constant, and the pin surfaces are gray diffusion
radiators.

3. The transfer of heat between any two pins of the
system is equal to the transfer of heat between the
longitudinal sections of these pins in planes perpendic-
ular to the plane in which the axes of the pins lie (Fig.
1b), In calculating the mutual irradiation of the pins,
we can replace the body to be cooled by a polyhedron,

and the bases of the pins may be assumed to be planes
(Fig. lc).

4, The surrounding space is a black body with zero
temperature.

With consideration of the foregoing, the law of ther-
mal radiation and the equation of heat conduction along
the pin will be valid in the following form:
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Since Q = 0 and x = L, Eqgs. (2) and (8) make it possi-
ble to derive the following expression for the deter-
mination of the temperature distribution along the pin:
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Ee(x) =eoT* + (1.—e) 3 Eipe (0). (5)
The boundary conditions for (4) are
T = Ty when x = 0. (6)

Let us find the expression for ZE}, .(x) and for this
we will initially determine the quantity Ejpe ,(x) for
the two pins positioned at an angle y (Fig. 1b).

We will assume that the density of the incident radi-
ation is independent of the coordinate y (see Fig., 1b)
and is equal for each value of x to the mean magnitude
along the strip 2(L - x)tg(a/2). It is then not difficult
to demonstrate that the expression for the determina-
tion of the density of the radiation incident on the pin
under consideration from all of the adjacent pins will
have the form
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Fig. 1. Radiating system with conical heat-removal pins: a) over-all view; b) and c) calculation
of radiative heat exchange between pins; d) hollow conical pin.
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The incident and effective radiations averaged over
the perimeter at section x will be determined from the
relationships

Einc 2 (%) = ';1;' Einc z (X), (9)

Epge(x) = 66 T* + (1 —&) Ejpe (). (10)

If there is radiant interaction between pin under con-
sideration and a number of other pins, in this event we
will have

3B (1) =

'%wm4@+ﬂmdﬁ+5mﬂ@+”¢

(11)
where the subscripts z, ¢, £, etc., denote the longi-
tudinal coordinates of the pins with which the pin under
consideration is in radiant interaction. Ejj, cp(x),
Einc ¢(x), ete., are determined from the same rela-
tionship (7), the only difference being that the angle
between the two pins under consideration must be sub-
stituted for the angle vy, and that, instead of E¢(z),
we must substitute Ejge(z), E&s(o), E&gl£), ete.,
calculated from expression (5) (whenx =z = ¢ = £;
Egs(x) = E&e(z) = BEEerlo) = EE##(£)). Let us also note
that for a system with n = 12 and 20, for which the
angles between the various pins are not identical,
when vy > vy, in the lower limit in expression (7) is a
function of x, whose form is found from geometric
considerations,

Analysis of the derived relationships shows that
the solution of the problem reduces to the solution of
a system of the two equations (4) and (5) with two un-
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known functions T(x) and E}¢(x). I we introduce the
following dimensionless variables:

; ox=
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the above-derived relationships will become dimen-
sionless and for the parameters of the problem for each
variant of the spatial distribution of the pins we will
have: the emissivity ¢, the apex angle « of the pin,
and the heat-conduction parameter
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By means of the derived relationships we can cal-
culate the radiant power of five radiator variants from
the number of pins and their spatial distribution (in
accordance with the known regular polyhedrons).

System (4) and (5) was solved numerically on a
computer by the method of successive approximations.
The solution for the conical pins was found to be as-
ymptotic for pins in the form of truncated cones as
L; — L (see Fig. 1b),

The results of the solution are shown in Fig, 2 in
the form of the relationship between the efficiency of
the system and &, «, and N for varying numbers of
radiator pins. The efficiency of the system is under-
stood to mean the ratio of the actual radiant flux to
that limit flux which would be emitted by the system
under consideration in the case of infinitely great
thermal conductivity for the material of the pins and
in the absence of radiant interaction between the pins:

N = (13)

L
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The relationships in Fig, 2 make it possible to
determine the flow of removed heat if the geometric
dimensions of the system are known and if we also
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Fig. 2. Efficiency of radiating system versus a and N for various
numbers of pins at ¢ = 1 (a) and 0.75 (b).
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know the values of ¢, T,, and the thermal conductivity
of the material (since in this case all of the param-
eters of the problem are known). The quantity ¥, for
each of the curves in Fig. 2 is determined from rela-
tionship (1), since a specific value of vy corre-
sponds to each number n of the pins.

It is not difficult to verify that the above-derived
results are valid also for hollow conical pins (Fig, 1d)
in which there is no heat transfer between the inside
surfaces and in which the wall thickness A varies along
the pin axis so as to satisfy the following condition:
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In this case, using the relationships in Fig. 2, we
have to replace the parameter N by N; which is deter-
mined from the relationship

N

N1= l_q:)Z .

(16)

The relationships in Fig. 2 make it possible, in
each specific case to optimize the radiator system
being investigated.

This particular method of calculation can be ex-
tended also to systems in which the various groups of
pins are situated under different conditions during the
process of radiant interaction. In this case, the initial
system of equations will include as many integrodif-
ferential equations in the form of (4) and integral rela-
tionships in the form of (5) as there are groups of pins
differing from each other, in terms oftheheat-balance
conditions.

NOTATION

Q is the heat flux along the pin at a distance x from
its base; T, and T are the temperatures at the base of
the pin and at a distance x from its base, respectively;
« is the angle at the pin top; A is the thermal conduc-
tivity; L and L, are the lengths of conical pin and of
truncated cone-type pin, respectively; vy is the angle
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between the pin axes; ¢ is the Stefan-Boltzmann con-
stant; & is the emissivity of the pin surface; Ep(x)

is the density of the effective radiation from the longi-
tudinal section of the pin under consideration at a
distance x from the pin base; Eq¢p(z) is the same for
the adjacent pin (Fig. 1b); Ejpcz(x) is the density of
the incident radiation from the adjacent pin onthe lon-
gitudinal section of the pin under consideration; E’{nc(x)
is the same, averaged with respect to perimeter of the
pin under consideration, EE;‘nc(x) is the density of the
incident radiationfrom all the otherpins, averaged with
respect to perimeter of the pin under consideration;
E"éff(x) is the density of the effective radiation calcu-
lated with account for incident radiation averaged with
respect to the perimeter; ry is the radius of the body
being cooled; 6 is the wall thickness of the hollow pin;
N is the pin's thermal conductivity; n is the number of
pins in the radiator; v,,i, is the mini_mum angle be-
tween pin axes for a given radiator; 9 is the efficiency
of the radiating system.

REFERENCES

1. G. L. Grozovskii, Izv. AN SSSR, OTN, Ener-
getika i avtomatika, no. 6, 1962,

2. E. M. Sparrow and E. R. G. Eckert, Trans.
ASME, ser. C: J. Heat Transfer, Vol. 84, no. 1,
1962.

3. Yu. A. Vasanov and Yu, G. Zhulev, Izv. AN
SSSR, Energetika i transport, no. 3, 1964.

4, B. A. Solov'ev, Izv. AN SSSR, Energetika i
transport, no. 1, 1966,

5. C. Johnson, E. Blum, and J. Weddel, collection:
Powerplants for Space Vehicles [Russian translation],
edited by D, D, Nevyarovskii], Izd. Mir, Moscow,
1964,

6. I. Wilkins and J. Ernest, Soc. Indust. Appl.
Math., 8, no, 4, 1960.

7. Yu. G. Zhulev, IFZh [Journal of Engineering
Physics], 13, no. 4, 1967.

13 June 1967



